Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 101
Filtrar
1.
Cyborg Bionic Syst ; 5: 0106, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38721040

RESUMO

A printable artificial muscle assembled from biomolecular motors, which we have recently developed, showed great potential in overcoming the design limitations of conventional biohybrid robots as a new bio-actuator. Characterizing its contractility for extending its applicability is important. However, conventional measurement methods are composed of complex operations with poor reproducibility, flexibility, and real-time responsiveness. This study presents a new method for measuring the contractile force generated by artificial muscles. A measurement system was constructed, wherein artificial muscles were patterned by UV laser scanning in an oil-sealed microchamber, and the contractile force was measured in real time using a microforce sensor extended by a 3D-printed microcantilever. The measurement accuracy of the sensor was ensured through calibration and correction. For demonstration purposes, a series of contractile measurements were carried out using the proposed system. The relationship between contractile force and the dimensions of the activation space of the artificial muscles, as well as the tensile properties of the contracted muscle chain were evaluated. The results will help characterize the contractile properties of the artificial muscle and lay the foundations for its further application in biohybrid robotics.

2.
Prev Med ; : 107999, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38735587

RESUMO

BACKGROUND: Limited research explores the impact of body mass index (BMI) change on osteoporosis, regarding the role of lipid metabolism. We aimed to cross-sectionally investigate these relationships in 820 Chinese participants aged 55-65 from the Taizhou Imaging Study. METHODS: We used the baseline data collected between 2013 and 2018. T-score was calculated by standardizing bone mineral density and was used for osteoporosis and osteopenia diagnosis. Multinomial logistic regression was used to examine the effect of BMI change on bone health status. Multivariable linear regression was employed to identify the metabolites corrected with BMI change and T-score. Exploratory factor analysis (EFA) and mediation analysis were conducted to ascertain the involvement of the metabolites. RESULTS: BMI increase served as a protective factor against osteoporosis (OR = 0.79[0.71-0.88], P-value<0.001) and osteopenia (OR = 0.88[0.82-0.95], P-value<0.001). Eighteen serum metabolites were associated with both BMI change and T-score. Specifically, high-density lipoprotein (HDL) substructures demonstrated negative correlations (ß = -0.08 to -0.06 and - 0.12 to -0.08, respectively), while very low-density lipoprotein (VLDL) substructions showed positive correlations (ß = 0.09 to 0.10 and 0.10 to 0.11, respectively). The two lipid factors (HDL and VLDL) extracted by EFA acted as mediators between BMI change and T-score (Prop. Mediated = 8.16% and 10.51%, all P-value<0.01). CONCLUSION: BMI gain among Chinese aged 55-65 is beneficial for reducing the risk of osteoporosis. The metabolism of HDL and VLDL partially mediates the effect of BMI change on bone loss. Our research offers novel insights into the prevention of osteoporosis, approached from the perspective of weight management and lipid metabolomics.

3.
J Adv Nurs ; 2024 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-38736281

RESUMO

AIM: Examine the levels of variables and explore drivers associated with shared decision-making attitudes among newly graduated nurses. DESIGN: This was a descriptive and cross-sectional study. METHODS: From August 2022 to October 2022, a cross-section of 216 newly graduated nurses from four comprehensive A-level hospitals in northern China was recruited using convenience sampling. Newly graduated nurses are generally defined as nurses with a service period of six months to one year. Data were collected using an online questionnaire support platform, including the Nursing Shared Decision-Making Attitude scale, Jefferson scale of Empathy-Health profession students and the Health Sciences Evidence-Based Practice questionnaire. All data were analysed descriptively, and correlational analysis and hierarchical regression were used to make identical connections between variables. RESULTS: Newly graduated nurses supported shared decision-making. Perceptions of shared decision-making were correlated with the experiences of empathy and evidence-based practice. Additionally, perspective-taking of empathy and beliefs, and the ability to search for and apply existing scientific findings of evidence-based practice had a significant impact on more positive attitudes. CONCLUSION: The survey showed that acceptance of shared decision-making was positive among newly graduated nurses. Clinical nursing managers and teachers should pay attention to cultivating the evidence-based practice and empathy of newly graduated nurses to adopt an optimistic attitude towards shared decision-making in the long term. IMPACT: The survey addresses attitudes of shared decision-making among newly graduated nurses and determines whether empathy and evidence-based practice has an impact on it. The main finding is that newly graduated nurses have an optimistic outlook on the implementation of shared decision-making. This survey showed that empathy and evidence-based practice competencies are associated with shared decision-making attitudes among newly graduated nurses. The results of this survey have an impact on educational institutions and hospitals in the form of recommendations. Several training programmes on empathy and evidence-based practice can help adopt the shared decision-making attitudes of newly graduated nurses. PATIENT OR PUBLIC CONTRIBUTION: No patient or public contribution.

4.
Sci Rep ; 14(1): 8483, 2024 04 11.
Artigo em Inglês | MEDLINE | ID: mdl-38605086

RESUMO

This mediation analysis aimed to investigate the associations among areal bone mineral density, mobility-related brain atrophy, and specific gait patterns. A total of 595 participants from the Taizhou Imaging Study, who underwent both gait and bone mineral density measurements, were included in this cross-sectional analysis. We used a wearable gait tracking device to collect quantitative gait parameters and then summarized them into independent gait domains with factor analysis. Bone mineral density was measured in the lumbar spine, femoral neck, and total hip using dual-energy X-ray absorptiometry. Magnetic resonance images were obtained on a 3.0-Tesla scanner, and the volumes of brain regions related to mobility were computed using FreeSurfer. Lower bone mineral density was found to be associated with higher gait variability, especially at the site of the lumbar spine (ß = 0.174, FDR = 0.001). Besides, higher gait variability was correlated with mobility-related brain atrophy, like the primary motor cortex (ß = 0.147, FDR = 0.006), sensorimotor cortex (ß = 0.153, FDR = 0.006), and entorhinal cortex (ß = 0.106, FDR = 0.043). Bidirectional mediation analysis revealed that regional brain atrophy contributed to higher gait variability through the low lumbar spine bone mineral density (for the primary motor cortex, P = 0.018; for the sensorimotor cortex, P = 0.010) and the low lumbar spine bone mineral density contributed to higher gait variability through the primary motor and sensorimotor cortices (P = 0.026 and 0.010, respectively).


Assuntos
Densidade Óssea , Marcha , Humanos , Estudos Transversais , Absorciometria de Fóton/métodos , Vértebras Lombares/diagnóstico por imagem , Encéfalo/diagnóstico por imagem
5.
Phenomics ; 4(1): 51-55, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38605906

RESUMO

Cardiovascular health metrics are now widely recognized as modifiable risk factors for cognitive decline and dementia. Metabolic perturbations might play roles in the linkage of cardiovascular diseases and dementia. Circulating metabolites profiling by metabolomics may improve understanding of the potential mechanism by which cardiovascular risk factors contribute to cognitive decline. In a prospective community-based cohort in China (n = 725), 312 serum metabolic phenotypes were quantified, and cardiovascular health score was calculated including smoking, exercise, sleep, diet, body mass index, blood pressure, and blood glucose. Cognitive function assessments were conducted in baseline and follow-up visits to identify longitudinal cognitive decline. A better cardiovascular health was significantly associated with lower risk of concentration decline and orientation decline (hazard ratio (HR): 0.84-0.90; p < 0.05). Apolipoprotein-A1, high-density lipoprotein (HDL) cholesterol, cholesterol ester, and phospholipid concentrations were significantly associated with a lower risk of longitudinal memory and orientation decline (p < 0.05 and adjusted-p < 0.20). Mediation analysis suggested that the negative association between health status and the risk of orientation decline was partly mediated by cholesterol ester and total lipids in HDL-2 and -3 (proportion of mediation: 7.68-8.21%, both p < 0.05). Cardiovascular risk factors were associated with greater risks of cognitive decline, which were found to be mediated by circulating lipoproteins, particularly the medium-size HDL components. These findings underscore the potential of utilizing lipoproteins as targets for early stage dementia screening and intervention. Supplementary Information: The online version contains supplementary material available at 10.1007/s43657-023-00120-2.

6.
Nat Commun ; 15(1): 3483, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38664416

RESUMO

Chemical discovery efforts commonly target individual protein domains. Many proteins, including the EP300/CBP histone acetyltransferases (HATs), contain several targetable domains. EP300/CBP are critical gene-regulatory targets in cancer, with existing high potency inhibitors of either the catalytic HAT domain or protein-binding bromodomain (BRD). A domain-specific inhibitory approach to multidomain-containing proteins may identify exceptional-responding tumor types, thereby expanding a therapeutic index. Here, we discover that targeting EP300/CBP using the domain-specific inhibitors, A485 (HAT) or CCS1477 (BRD) have different effects in select tumor types. Group 3 medulloblastoma (G3MB) cells are especially sensitive to BRD, compared with HAT inhibition. Structurally, these effects are mediated by the difluorophenyl group in the catalytic core of CCS1477. Mechanistically, bromodomain inhibition causes rapid disruption of genetic dependency networks that are required for G3MB growth. These studies provide a domain-specific structural foundation for drug discovery efforts targeting EP300/CBP and identify a selective role for the EP300/CBP bromodomain in maintaining genetic dependency networks in G3MB.


Assuntos
Proteína p300 Associada a E1A , Redes Reguladoras de Genes , Meduloblastoma , Humanos , Meduloblastoma/genética , Meduloblastoma/tratamento farmacológico , Meduloblastoma/metabolismo , Meduloblastoma/patologia , Proteína p300 Associada a E1A/metabolismo , Proteína p300 Associada a E1A/genética , Proteína p300 Associada a E1A/antagonistas & inibidores , Linhagem Celular Tumoral , Redes Reguladoras de Genes/efeitos dos fármacos , Animais , Domínios Proteicos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Camundongos , Neoplasias Cerebelares/genética , Neoplasias Cerebelares/tratamento farmacológico , Neoplasias Cerebelares/metabolismo , Neoplasias Cerebelares/patologia , Antineoplásicos/farmacologia
7.
BMC Geriatr ; 24(1): 303, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38561655

RESUMO

BACKGROUND: Gait disturbance is common in older adults with vascular diseases. However, how carotid atherosclerosis affects gait remains poorly understood. The objectives were to investigate the associations between carotid intima-media thickness and specific gait performances and explore the potential role of brain structure in mediating these associations. METHODS: A cross-sectional analysis of data from the Taizhou Imaging Study was conducted, including 707 individuals who underwent both gait and carotid ultrasound examinations. Gait assessments include the Timed-Up-and-Go test, the Tinetti test, and quantitative gait assessment using a wearable device. Quantitative parameters were summarized into independent gait domains with factor analysis. Magnetic resonance images were obtained on a 3.0-Tesla scanner, and the volumes of fifteen brain regions related to motor function (primary motor, sensorimotor), visuospatial attention (inferior posterior parietal lobules, superior posterior parietal lobules), executive control function (dorsolateral prefrontal cortex, anterior cingulate), memory (hippocampus, entorhinal cortex), motor imagery (precuneus, parahippocampus, posterior cingulated cortex), and balance (basal ganglia: pallidum, putamen, caudate, thalamus) were computed using FreeSurfer and the Desikan-Killiany atlas. Mediation analysis was conducted with carotid intima-media thickness as the predictor and mobility-related brain regions as mediators. RESULTS: Carotid intima-media thickness was found to be associated with the Timed-Up-and-Go performance (ß = 0.129, p = 0.010) as well as gait performances related to pace (ß=-0.213, p < 0.001) and symmetry (ß = 0.096, p = 0.045). Besides, gait performances were correlated with mobility-related brain regions responsible for motor, visuospatial attention, executive control, memory, and balance (all FDR < 0.05). Notably, significant regions differed depending on the gait outcomes measured. The primary motor (41.9%), sensorimotor (29.3%), visuospatial attention (inferior posterior parietal lobules, superior posterior parietal lobules) (13.8%), entorhinal cortex (36.4%), and motor imagery (precuneus, parahippocampus, posterior cingulated cortex) (27.3%) mediated the association between increased carotid intima-media thickness and poorer Timed-Up-and-Go performance. For the pace domain, the primary motor (37.5%), sensorimotor (25.8%), visuospatial attention (12.3%), entorhinal cortex (20.7%), motor imagery (24.9%), and balance (basal ganglia: pallidum, putamen, caudate, thalamus) (11.6%) acted as mediators. CONCLUSIONS: Carotid intima-media thickness is associated with gait performances, and mobility-related brain volume mediates these associations. Moreover, the distribution of brain regions regulating mobility varies in the different gait domains. Our study adds value in exploring the underlying mechanisms of gait disturbance in the aging population.


Assuntos
Espessura Intima-Media Carotídea , Equilíbrio Postural , Humanos , Idoso , Estudos Transversais , Estudos de Tempo e Movimento , Encéfalo/patologia , Marcha/fisiologia
8.
Comput Methods Programs Biomed ; 250: 108162, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38631129

RESUMO

BACKGROUND AND OBJECTIVES: Sensor-based wearable devices help to obtain a wide range of quantitative gait parameters, which provides sufficient data to investigate disease-specific gait patterns. Although cerebral small vessel disease (CSVD) plays a significant role in gait impairment, the specific gait pattern associated with a high burden of CSVD remains to be explored. METHODS: We analyzed the gait pattern related to high CSVD burden from 720 participants (aged 55-65 years, 42.5 % male) free of neurological disease in the Taizhou Imaging Study. All participants underwent detailed quantitative gait assessments (obtained from an insole-like wearable gait tracking device) and brain magnetic resonance imaging examinations. Thirty-three gait parameters were summarized into five gait domains. Sparse sliced inverse regression was developed to extract the gait pattern related to high CSVD burden. RESULTS: The specific gait pattern derived from several gait domains (i.e., angles, phases, variability, and spatio-temporal) was significantly associated with the CSVD burden (OR=1.250, 95 % CI: 1.011-1.546). The gait pattern indicates that people with a high CSVD burden were prone to have smaller gait angles, more stance time, more double support time, larger gait variability, and slower gait velocity. Furthermore, people with this gait pattern had a 25 % higher risk of a high CSVD burden. CONCLUSIONS: We established a more stable and disease-specific quantitative gait pattern related to high CSVD burden, which is prone to facilitate the identification of individuals with high CSVD burden among the community residents or the general population.


Assuntos
Doenças de Pequenos Vasos Cerebrais , Marcha , Dispositivos Eletrônicos Vestíveis , Humanos , Doenças de Pequenos Vasos Cerebrais/diagnóstico por imagem , Doenças de Pequenos Vasos Cerebrais/fisiopatologia , Masculino , Pessoa de Meia-Idade , Feminino , Idoso , Imageamento por Ressonância Magnética , Análise da Marcha/métodos
9.
Hepatology ; 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38537134

RESUMO

BACKGROUND AND AIMS: HBV infection is a major etiology of acute-on-chronic liver failure (ACLF). At present, the pattern and regulation of hepatocyte death during HBV-ACLF progression are still undefined. Evaluating the mode of cell death and its inducers will provide new insights for developing therapeutic strategies targeting cell death. In this study, we aimed to elucidate whether and how immune landscapes trigger hepatocyte death and lead to the progression of HBV-related ACLF. APPROACH AND RESULTS: We identified that pyroptosis represented the main cell death pattern in the liver of patients with HBV-related ACLF. Deficiency of MHC-I in HBV-reactivated hepatocytes activated cytotoxic NK cells, which in turn operated in a perforin/granzyme-dependent manner to trigger GSDMD/caspase-8-dependent pyroptosis of hepatocytes. Neutrophils selectively accumulated in the pyroptotic liver, and HMGB1 derived from the pyroptotic liver constituted an important factor triggering the generation of pathogenic extracellular traps in neutrophils (NETs). Clinically, elevated plasma levels of myeloperoxidase-DNA complexes were a promising prognostic biomarker for HBV-related ACLF. More importantly, targeting GSDMD pyroptosis-HMGB1 release in the liver abrogates NETs that intercept the development of HBV-related ACLF. CONCLUSIONS: Studying the mechanisms that selectively modulate GSDMD-dependent pyroptosis, as well as its immune landscapes, will provide a novel strategy for restoring the liver function of patients with HBV-related ACLF.

10.
Blood ; 2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38446698

RESUMO

Hemophagocytic lymphohistiocytosis (HLH) comprises a severe hyperinflammatory phenotype driven by the overproduction of cytokines, many of which signal via the JAK/STAT pathway. Indeed, the JAK1/2 inhibitor ruxolitinib has demonstrated efficacy in pre-clinical studies and early-phase clinical trials in HLH. Nevertheless, concerns remain for ruxolitinib-induced cytopenias, which are postulated to result from the blockade of JAK2-dependent hematopoietic growth factors. To explore the therapeutic effects of selective JAK inhibition in mouse models of HLH, we carried out studies incorporating the JAK1 inhibitor itacitinib, the JAK2 inhibitor fedratinib and the JAK1/2 inhibitor ruxolitinib. All three drugs were well-tolerated and at the doses tested, they suppressed interferon-gamma (IFNg)-induced STAT1 phosphorylation in vitro and in vivo. Itacitinib, but not fedratinib, significantly improved survival and clinical scores in CpG-induced secondary HLH. Conversely, in primary HLH, where perforin-deficient (Prf1-/-) mice are infected with lymphocytic choriomeningitis virus (LCMV), itacitinib and fedratinib performed suboptimally. Ruxolitinib demonstrated excellent clinical efficacy in both HLH models. RNA-sequencing of splenocytes from LCMV-infected Prf1-/- mice revealed that itacitinib targeted inflammatory and metabolic pathway genes in CD8 T cells, while fedratinib targeted genes regulating cell proliferation and metabolism. In monocytes, neither drug conferred major transcriptional impacts. Consistent with its superior clinical effects, ruxolitinib exerted the greatest transcriptional changes in CD8 T cells and monocytes, targeting more genes across several biologic pathways, most notably JAK-dependent pro-inflammatory signaling. We conclude that JAK1 inhibition is sufficient to curtail CpG-induced disease, but combined inhibition of JAK1 and JAK2 is needed to best control LCMV-induced immunopathology.

11.
J Fungi (Basel) ; 10(3)2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38535221

RESUMO

Candida albicans is a clinically significant opportunistic fungus that is generally treated with antifungal drugs such as itraconazole and fluconazole. However, the recent emergence of fungal resistance has made treatment increasingly difficult. Therefore, novel antifungal treatment methods are urgently required. Hexanol ethosome photodynamic therapy (HE-PDT) is a method that uses photosensitizers (PS), such as hexanol ethosome, to exert antifungal effects, and can be used to treat resistant fungal strains. However, due to the high dose of PS required for antifungal treatment, excess photosensitizers may remain. Furthermore, once exposed to light, normal tissues or cells are damaged after photodynamic therapy, which limits the clinical application of HE-PDT. Therefore, improving the efficacy without increasing the dose is the key to this treatment. In this study, the antifungal effect of copper sulfate combined with HE-PDT was investigated, and its mechanism was explored. The results suggested that exogenous copper sulfate significantly increased the antifungal effect of HE-PDT by enhancing the rate of C. albicans inhibition, increasing reactive oxygen species (ROS) accumulation, increasing the rate of apoptosis, and altering the mitochondrial membrane potential (MMP) and ATP concentration, which is related to the downregulation of apoptosis-inducing factor (AIF1) expression. In conclusion, copper sulfate combined with photodynamic therapy significantly inhibited the activity of C. albicans by inducing apoptosis. The combined approach reported herein provides new insights for future antifungal therapy.

12.
Eur J Med Chem ; 268: 116241, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38382391

RESUMO

Insulin-like growth factor 2 mRNA-binding proteins (IMPs, IGF2BPs) are RNA-binding proteins that regulate a variety of biological processes. In recent years, several studies have found that IGF2BPs play multiple roles in various biological processes, especially in cancer, and speculated on their mechanism of anticancer effect. In addition, targeting IGF2BPs or their downstream target gene has also received extensive attention as an effective treatment for different types of cancer. In this review, we summarized the recent progress on the role of IGF2BPs in cancers and their structural characteristics. We focused on describing the development of inhibitors targeting IGF2BPs and the prospects for further applications.

13.
Curr Res Food Sci ; 8: 100687, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38318314

RESUMO

The potential adverse effects of the plant-based dietary pattern on bone health have received widespread attention. However, the biological mechanisms underlying the adverse effects of plant-based diets on bone health remain incompletely understood. The objective of this study was to identify potential biomarkers between plant-based diets and bone loss utilizing metabolomic techniques in the Taizhou Imaging Study (TIS) (N = 788). Plant-based diet indexes (overall plant-based diet index (PDI), healthy plant-based diet index (hPDI), and unhealthy plant-based diet index (uPDI)) were calculated using the food frequency questionnaire, and bone mineral density (BMD) was measured using dual-energy X-ray absorptiometry. A multinomial logistic regression was used to explore the associations of plant-based diet indexes with bone loss. Furthermore, mediation analysis and exploratory factor analysis (EFA) were performed to explore the mediated effects of metabolites on the association of plant-based diets with BMD T-score. Our results showed that higher hPDI and uPDI were positively associated with bone loss. Moreover, nineteen metabolites were significantly associated with BMD T-score, among them, seven metabolites were associated with uPDI. Except for cholesterol esters in VLDL-1, the remaining six metabolites significantly mediated the negative association between uPDI and BMD T-score. Interestingly, we observed that the same six metabolites mediated the positive association between fresh fruit and BMD T-score. Collectively, our results support the deleterious effects of plant-based diets on bone health and discover the potential mediation effect of metabolites on the association of plant-based diets with bone loss. The findings offer valuable insights that could optimize dietary recommendations and interventions, contributing to alleviate the potential adverse effects associated with plant-based diets.

15.
Org Biomol Chem ; 22(1): 159-168, 2023 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-38051231

RESUMO

Peroxynitrite (ONOO-) and glutathione (GSH) play mutually regulating roles in the oxidant-antioxidant balance of organisms, which has a profound relationship with people's health and disease. In this study, we designed a two-photon fluorescent probe CD-NA that could simultaneously detect ONOO- and GSH via dual-fluorophore and dual-site properties. CD-NA shows different fluorescence responses to ONOO- (annihilated red fluorescence) and GSH (enhanced green emission) with high specificity and sensitivity. Notably, the response of CD-NA to ONOO- was unaffected by GSH, and the reverse is also true. It allows the ONOO-/GSH cross-talk to be successfully imaged. Given these excellent properties, CD-NA has been favorably employed in detecting ONOO- and GSH in living cells with the ability to target mitochondria. Therefore, CD-NA offers an efficient method for understanding the oxidant-antioxidant balance and interrelated physiological functions of ONOO- and GSH in living systems, and provides a new strategy to sort out the complex relationships and roles of various analytes in complex physiological processes.


Assuntos
Antioxidantes , Corantes Fluorescentes , Humanos , Ácido Peroxinitroso , Oxidantes , Glutationa
16.
Pharmaceutics ; 15(11)2023 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-38004556

RESUMO

Intranasal administration is a promising strategy to enhance the delivery of the sEVsomes-based drug delivery system to the central nervous system (CNS). This study aimed to explore central distributive characteristics of mesenchymal stem cell-derived small extracellular vesicles (MSC-sEVs) and underlying pathways. Here, we observed that intranasal MSC-sEVs were rapidly distributed to various brain regions, especially in the subcortex distant from the olfactory bulb, and were absorbed by multiple cells residing in these regions. We captured earlier transportation of intranasal MSC-sEVs into the perivascular space and found an increase in cerebrospinal fluid influx after intranasal administration, particularly in subcortical structures of anterior brain regions where intranasal sEVs were distributed more significantly. These results suggest that the perivascular pathway may underlie the rapid and widespread central delivery kinetics of intranasal MSC-sEVs and support the potential of the intranasal route to deliver MSC-sEVs to the brain for CNS therapy.

17.
J Med Chem ; 66(23): 15944-15959, 2023 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-37983486

RESUMO

M6A (N6-methyladenosine) plays a significant role in regulating RNA processing, splicing, nucleation, translation, and stability. AlkB homologue 5 (ALKBH5) is an Fe(II)/2-oxoglutarate (2-OG)-dependent dioxygenase that demethylates mono- or dimethylated adenosines. ALKBH5 can be regarded as an oncogenic factor for various human cancers. However, the discovery of potent and selective ALKBH5 inhibitors remains a challenge. We identified DDO-2728 as a novel and selective inhibitor of ALKBH5 by structure-based virtual screening and optimization. DDO-2728 was not a 2-oxoglutarate analogue and could selectively inhibit the demethylase activity of ALKBH5 over FTO. DDO-2728 increased the abundance of m6A modifications in AML cells, reduced the mRNA stability of TACC3, and inhibited cell cycle progression. Furthermore, DDO-2728 significantly suppressed tumor growth in the MV4-11 xenograft mouse model and showed a favorable safety profile. Collectively, our results highlight the development of a selective probe for ALKBH5 that will pave the way for the further study of ALKBH5 targeting therapies.


Assuntos
Dioxigenases , Leucemia Mieloide Aguda , Humanos , Camundongos , Animais , Ácidos Cetoglutáricos , Dioxigenases/metabolismo , Pirimidinas/farmacologia , Pirimidinas/uso terapêutico , Leucemia Mieloide Aguda/tratamento farmacológico , Homólogo AlkB 5 da RNA Desmetilase/metabolismo , Proteínas Associadas aos Microtúbulos , Dioxigenase FTO Dependente de alfa-Cetoglutarato
18.
Mar Pollut Bull ; 197: 115765, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37988882

RESUMO

The relationships between phytoplankton carbon (C) biomass and diversity (i.e., C-to-H' ratio) and chlorophyll a (i.e., C-to-Chl a ratio) are good indicators of marine ecosystem functioning and stability. Here we conducted four cruises spanning 2 years in Jiaozhou Bay to explore the dynamics of C-to-H' and C-to-Chl a ratios. The results showed that the phytoplankton C biomass and diversity were dominated by diatoms, followed by dinoflagellates. The average C-to-H' ratio ranged from 84.10 to 912.17, with high values occurring in the northern region of the bay. In contrast, the average C-to-Chl a ratio ranged between 15.55 and 89.47, and high values primarily appeared in the northern or northeastern part of the bay. In addition, the redundancy analysis showed that temperature and phosphate (DIP) were significantly correlated with both ratios in most cases, indicating that temperature and DIP may be key factors affecting the dynamics of C-to-H' and C-to-Chl a ratios.


Assuntos
Clorofila , Fitoplâncton , Clorofila/análise , Clorofila A , Ecossistema , Baías , Carbono , China , Monitoramento Ambiental/métodos
19.
BMC Oral Health ; 23(1): 640, 2023 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-37670297

RESUMO

BACKGROUND: We aimed to investigate the association between oral health and cognitive function in a sample of older adults from a Chinese rural community. METHODS: The cross-sectional cognitive function of 677 individuals were assessed by Mini-Mental State Examination (MMSE) and Montreal Cognitive Assessment (MoCA). A comprehensive profile of the oral health status was evaluated by questionnaire and clinical examination. RESULTS: Multiple covariates-adjusted regression models demonstrated decayed teeth (DT) and decayed/missing/filled teeth (DMFT) were negatively associated with MoCA score (all p < 0.05). Calculus index (CI) and clinical attachment loss (CAL) were significantly associated with the lower MoCA, short-term memory and executive function score, respectively (all p < 0.05). Additionally, participants with missing teeth unrestored tend to get lower MMSE and MoCA scores (p < 0.05). The results also showed that increased DT and CI were modestly associated with higher odds of cognitive impairment (p < 0.05). CONCLUSIONS: There is an association between oral health and global cognition. Poor periodontal status was strongly associated with worse global cognition performance, especially in the short-term memory and executive domain for the aging population.


Assuntos
Anodontia , Disfunção Cognitiva , Humanos , Idoso , Saúde Bucal , Estudos Transversais , População do Leste Asiático , Cognição
20.
Pharmaceutics ; 15(7)2023 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-37514138

RESUMO

The enormous and thin alveolar epithelium is an attractive site for systemic protein delivery. Considering the excellent biocompatibility of phospholipids with endogenous pulmonary surfactant, we engineered dimyristoylphosphatidylcholine (DMPC)-based liposomes for pulmonary administration, using Cy5.5-labeled bovine serum albumin (BSA-Cy5.5) as a model protein payload. The level of cholesterol (Chol) and surface modification with PEG in inhalable liposomes were optimized iteratively based on the encapsulation efficiency, the release kinetics in the simulated lung fluid, and the uptake in murine RAW 264.7 macrophages. The plasma pharmacokinetics of BSA-Cy5.5-encapsulated liposomes with the composition of DMPC/Chol/PEG at 85:10:5 (molar ratio) was studied in mice following intratracheal aerosolization, in comparison with that of free BSA-Cy5.5 solution. The biodisposition of BSA-Cy5.5 was continuously monitored using whole-body near-infrared (NIR) fluorescence imaging for 10 days. We found that the systemic bioavailability of BSA-Cy5.5 from inhaled liposomes was 22%, which was notably higher than that of inhaled free BSA-Cy5.5. The mean residence time of BSA-Cy5.5 was markedly prolonged in mice administered intratracheally with liposomal BSA-Cy5.5, which is in agreement with the NIR imaging results. Our work demonstrates the great promise of inhalable DMPC-based liposomes to achieve non-invasive systemic protein delivery.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA